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IV. On an inequality of long period in the motions of the Earth and Venus.
By Georce Bmopein Ay, 4.M., F.R. dst. Soc., F.G.S., late Fellow of
Trinity College, Cambridge, and Plumian Professor of Astronomy and Ex-
perimental Philosophy in the University of Cambridge. Communicated by
Sir J. F.W. HerscueL, F.R.S. &c. &c. &ec.

Read November 24, 1831.

INa paper ¢ On the corrections of the elements of DELamBrE’s Solar Tables,”
published in the Philosophical Transactions for 1828, I stated that the compa-
rison of the corrections in the epochs of the sun and the sun’s perigee given by
late observations, with the corrections given by the observations of the last
century, appeared to indicate the existence of some inequality not included in
the arguments of those Tables. As soon as I had convinced myself of the ne-
cessity of seeking for some inequality of long period, I commenced an exami-
nation of the mean motions of the planets, with the view of finding one whose
ratio to the mean motion of the earth could be expressed very nearly by a pro-
portion whose terms were small: and I did not long seek in vain.

It is well known that the appearances of Venus recur in very nearly the same
order every eight years : and therefore some multiple of the periodic time of
Venus is nearly equal to eight years. It is easily seen that this multiple is
thirteen: and consequently eight times the mean motion of Venus is nearly
equal to thirteen times the mean motion of the Earth. According to Larrace,
(Méec. CéL. liv. vi. chap. 6.) the mean annual motion of Venus is 6505198 ;
that of the Earth 3995°993. Hence

8 X mean annual motion of Venus. . . . = 52018584
13 X mean annual motion of the Earth . . = 5199 909

Difference. . . . . .. = 1675

. . 1 . .
The difference is about 390 of the mean annual motion of the Earth; and it
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68 PROFESSOR AIRY ON AN INEQUALITY OF LONG PERIOD

implies the existence of an inequality whose period is about 240 years. No
term has. yet been calculated whose period is so long with respect to the
periodic time of the planets disturbed *. 'The probability that there would be
found some sensible irregularity depending on this term, may be estimated
from this consideration; that in integrating the differential equations, this
term receives a multiplier of 3 X 13 X (240)2, or about 2,200,000.

On the other hand, the coefficient of this term is of the fifth order (with re-
gard to the excentricities and inclinations of the orbits). The excentricities of
both orbits are small. And it is remarkable that in the present position of the
perihelia, the terms which would otherwise produce a large inequality destroy
each other almost exactly. The inclination however is not so small ; and upon
this the existing inequality depends principally for its magnitude.

The value of the principal term, calculated from the theory, I gave in a post-
script to the paper above cited. I propose in the present memoir to give an
account of the method of calculation, and to include other terms which are
necessarily connected with the principal inequality.

PART L.

PERTURBATION OF THE EARTH’S LONGITUDE AND RADIUS VECTOR.

SectioN 1.

Method adopted for this investigation.

1. The motion of a disturbed planet may be represented by supposing it to
move, according to the laws of undisturbed moticn, in an ellipse whose dimen-
sions.and position are continually changing : the epoch of the planet’s mean
longitude at the origin of the time being also supposed to change. Putting
for the semi-axis major; e for the excentricity ; = for the longitude of perihe-
lion; » for the mean motion in longitude in a unit of time; ¢ for the epoch, or
the mean longitude when £ =0; (all which are variable) : m for the mass of
the planet (Venus) ; w for the sum of the masses of the sun and planet ; and the
same letters with accents for the same quantities relative to another planet (the

* The period of the long inequality of Saturn is only about thirty times as great as the periodic time
of Saturn. ‘
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Earth) ; the variation of the elements of the second planet’s orbit will be given
by the following equations:
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terms depending on the mean motions of the two planets. These expressions
are true only on the supposition that the actual orbit of =/ is in the plane of
xy, or is so little inclined that the square of the inclination may be neglected.
The values of @, ¢, &c. on the right-hand side of the equations ought in strict-
ness to be the true variable values. But it will in general be sufficiently accu-
rate to put for ¢ the value E which it had near the time for which the investi-
gation is made, and to consider it as constant: or at any rate the expression

E 4+ F¢, where F is the mean value of its increase when ¢ = 0: and similarly
.. da deé
for the others. Determining thus the values of Uaz, E%’ &c. and from them

those of @/, ¢, &c., they are to be substituted in the expressions
r=d {1 +—19—e’2+ (—e'+ %3'3 - &c.) cos (n't 4 ¢ — =)
+ (— -;-e'2+&c.)cos @nt42¢d —2a) 4 &e. }
V=nt+¢+ (2 ¢ — 711—6’3 + &c.) sin(@W'¢ 4 ¢ — @)
+ (—ZT €2 — % 44 &c.) sin (27t + 2k ¢ —2a') 4+ &e.

and the true values of the radius vector and longitude are obtained.
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2. When (as in the present instance) the inequality is so small that we may

be satisfied with the principal part of it, we may in the expressions omit the
powers of ¢. Thus we have

da’__ 29 a? c_l_B

dt — = 4 T dd

dn 37”4 dR

dt — w de

de wd dR

dt we ' da

d = wa dR

dt — T " de

ddf _ _3n"d dR 2nd® dR 1 ddd dR
il P W dd T e W de

3. Hitherto this method has been actually used (I believe) only for the cal-
culation of secular variations. But it can be applied with great advantage in
almost every case : and in the instance before us it is particularly convenient,
as it requires only the development of a single term. For if in the development
of R we take the terms depending on cos {13 n't — 8 n¢ 4 A}, whose coeflicient

! / !
is of the 5th order, it will be found that %, %, and 3—;, are of the 5th order,

de da' . .
(7;‘ of the 4th order, and 7‘% of the 3rd order. Integrating these expressions,

and substituting them in the formula for ¢!, there will be produced terms of the
forms 6371'_-%51—75 sin {183 #/t— 8nt¢ -+ B} andi—gﬁg:g;zsin {127/t —8nt-C3},

where p is of the 5th, and ¢ of the 4th order. And a little examination will
show that no other argument will produce terms of the same or of a lower
order, which are divided by the small quantity 13 ' — 8x: inasmuch as this

. - . . . dad
divisor is introduced only by integration of the expressions for ”d‘aZ’ &c. Our

object then at present is to select in the development of R all the terms of the
form A cos {137 ¢ — 8n¢ -4 B}. And as the inequality which we are seeking
will probably be small, we may confine ourselves to those terms in which the
order of the coefficient is the lowest possible: that is, to terms of the 5th order.
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SEcTION 2.

On the abridgement which the development admits of, and the notation which it
permits us to use.

4. Let ¢ be the longitude of the node of the orbit of m (Venus), and ¢ its
inclination : the orbit of m' (the Earth) being supposed to coincide with the
plane of zy. Let v, the longitude of m, be measured* by adding the angular
distance of z from its node to the longitude of the node. Then v — 4 is the
distance of m from the node. Let r be the true radius vector of m: then

& =7 cos?

y =r.sin?

x =r{cos(v—40).cosd—sin(v—10).sind.cos ¢}
y =r{cos (v—10).sind 4 sin (v —4) .cosd.cos ¢}
g =r.sin(v—40).sino

Substituting these, the expression for R becomes
zn;:—{eos (v'—48) .cos (v—4) + cos ¢ .sin (v' —0) . sin (v — .9)}

m .
v {w_zr/r (cos(v’—ﬁ).cos('o—o)-{— cos ¢ . sin (v’-—e).sin(v—ﬁ))+r“}

in which it must be remarked that » and v, when expressed in terms of #, will
not involve the constants 4 and ¢. This may be changed into

3’;; cos (v’ —v) — sin? -;i-.cos (V' —v) + sin? —Z— cos (v +v—2 0)}

m
vV {H”-—Qr’r. cos(v' —v) +12 427 r.sin® —g— cos (v —v)—2r'r. sing—%cos (W +v—290) }

or,
Y o8 (o) — =
~5 COS (V' —v) V{r®—2rr.cos(V —v) + r°}

mryr mr’}

i ' ' { re—1 t
In2— 3 — L A . . 3
sin?Z- {cos (v'—v)—cos (V+-v--2 ¢} P arir.cos (I— 1) 1 7} p=

* 1, the longitude of the perihelion of m, must be measured in the same manner.
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— —S—sin‘*i{cos(v’—v)—cos(v’+v—20)}2' mr :
2 2 {r* =277, cos (vV=v) + r°}*
+ &ec.

5. The first line of this may be expanded in the form ‘
—m { 7:— I‘;O)+ I‘g)cos (¥'=v) +I‘;2)cos (2¢'—2v) + &ec. }

(O) (1) . . ’ (3 ’
where T, ", I';", &c., are functions of r and ».  'We must then express » and

. ., . . 0) 1) 2) .
r in terms of »'¢ and » ¢, and must substitute these values in I‘; , I‘; , ; , &e.

and must express o' and v in terms of % and n¢; and on multiplying the re-
spective expressions we shall have the development necessary for our method.

6. Now upon expressing 7 in terms of #'¢, the following remarkable law
always holds : The index of the term of lowest order in the coefficient of such
an argument as cos (pn't 4 A),is p. The same is true with regard to the de-
velopment of », v/, and v.

7. Now such a term as A cos {13%'t—8n¢t+B} can be produced only by

the multiplication of :f’rf (kn’t—knt + kd—k e), (from the first term in the

developrhent of cos (k’v’ - kv)), with (13?6\7 k) (Wt +¢ —=’) and

;:ions (8ok) (nt+e—w) (occurring in the development of ko' — kv, or of I“(;)).
The largest term in the coefficient, according to the rule just explained, will
be of the order whose index is the sum of 13cvf and 80k, Now if kbe < 8,
as for instance if % be 7, the index of the order is 6 4+ 1 =7, or the term is of
the 7th order, and therefore is to be rejected. And if £ be > 13, as for instance
if % = 14, the index of the order is 1 4 6 = 7, and the term is to be rejected.
But if %k be8, or 13, or any number between them, as for instance 10, then
the order of the term is 3 + 2 =5, and the term is to be kept. It appears
therefore that the only terms which we shall have occasion to develope, are
(8) \ : ) T _ (18)
T; . cos (8¢v'—8v), I'; . cos (9v'—9v), &c. as faras T, . cos (130" — 13v)

inclusively.-
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8. Supposing then % to be not less than 8 nor greater than 13, the term

€os (/c We—knt+ ke —k s) must be multiplied by & ((13 — k) ('t + =)

sin sin

+ (k—8) nt 4 —-za’)) in order to produce a term of the form A cos (13 7't
— 8n ¢t 4 B) whose coefficient is of the 5th order. The latter factor must have

18—k cos

arisen from the product of two such terms as ¢ “gin

(3—F) Wit e =)

— 8 cos

k
ande” .o

(k—8) (nt 4+ ¢—w). The expansion of such a product will always

produce two terms, one of which has for argument the sum of the arguments
of the factors, and the other has the difference of the same arguments. The
point to which I wish particularly to call the attention of the reader is this:
The term of the product depending on the sum of the arguments is the only
one which is useful to us. For instarce; the product of ¢2. sin 2 (#'t + ¢ — =)
and ¢®.sin 3 (nt+¢—w») willbe — 4 €2 ¢3.cos (27213 nt+2¢ + 3¢ —20' —3w)
4+ 1e2e.cos (2n't—3nt+2¢ —3:—2w' 4 3=); the combination of the first
term with cos (11 7't —11n¢+4 11¢— 11¢) will produce a term of the form
A cos (13 7't —8nt + B) whose coefficient is of the 5th order: the second
term will not produce a term of that form. We might choose terms, as
¢ .sin (7't 4 ¢ — ') and €°. sin 6 (n ¢ - ¢ — =) such that the part of the product
depending on the difference of the arguments, or } ¢ ¢%. cos (7't — 6 n ¢ 4-¢' —6¢
— @'+ 6 =) combining with such a term as cos (14 74— 147n¢ 4 14— 14 £),
would produce a term of the form required: but its coeflicient would not be
of the 5th order. It is equally necessary to remark that, in multiplying the

term thus selected by ;otf (k wt—knt+ ke — Ice) , we again preserve only that

part of the product depending on the sum of the arguments.

9. On the circumstance that, in taking the product of two circular functions,
we have to retain only the term whose argument is the sum of the arguments,
depends the principle of our notation. For whenever (in an advanced stage

of the operations) such a term as :10; (2 Wt+3nt+42¢4+3:—2%'—3 w) oc-

curs, we shall know that, being formed in accordance with this rule, it must
MDCCCXXXII. L
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sin

have arisen from the product of ¢'2 :fns (2 we42¢ -—2'@") and e3°>° (3m’+3e-—3w) ;

its coefficient therefore can only be ¢2¢3. And conversely, from seeing this
coefficient, we should be certain that the argument would be 2 (#'¢ 4 ¢ — =)
+ 3 (nt +¢—=). Instead therefore of writing

€2 .cos(2nt+3nt+42¢+3¢e—24'—3w)
we might simply write

¢2 6. cos
omitting the argument entirely. But it will be found more convenient to re-
tain the figures in the argument, writing it thus,

e2e . cos (24 3)
the first figure being always appropriated to the accented argument. And
when this term is multiplied by cos (11 #¢—11n¢-+11¢ — 11¢) or cos(11—11),
we may write down the result

1¢2 6. cos (13 —8)
without any fear of mistake. For we know that the argument must have been
produced by adding 2 (#¢ + ¢ —o), 8 (nt +¢—w), and 11 (Wi—nt + ¢ —¢),
and thus when a result is obtained the term can be filled up.

10. If we examine the second line in the last expression of (4), it is easily seen
that sin? —g—, a quantity of the second order (considering sin % as of the same
order with ¢ and ¢) enters as multiplier into two terms: of which the first, or
sin? % .cos (v' —v), when developed will have in every term one part of the
argument produced by a subtraction ; and therefore, when combined with the
expansion of the term multiplying it, will produce terms cos (138 — 8) of the
7th order at lowest ; the first term therefore is useless. But the second, or

— sin? -gl . cos (V' 4+ v — 24), is exactly analogous to €2 cos (v' + v — 2 =), which

would arise from the product of €% cos (2v — 2 =) and cos (v' — v), and to which
all the preceding remarks would apply; and examination would show that in

the development of this term, in which products of sin? -2 with powers of ¢ and e
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will occur, the same rule must be followed, namely, that the only useful terms
in the products are those in which the arguments are added. And whenever

sin? % occurs in the coefficient, — 2 4 occurs in the argument; so that there

will be no possibility of mistake in using the notation described in (9).
11. On examining the third line in the last expression of (4), it will be

seen in the same manner that the only part of — —2’— sint -?;— {cos @ =)
2
—cos (V+v—2 A)} to be preserved is — —z- sin‘hgi .cos (2¢' 4 2v —44).

The same remarks apply to this term as to the last; and for a similar reason
the notation of (9) may be used without fear of mistake.

12. By the use of this notation we may in some instances materially shorten
our expressions. For instance, we might have the terms '

Feet.cos(@i+4ant+d +4e—o’—4w)

+Ge’e2sin2-g;. cos(@tt4nt+é 4+ 4e—o' —2w—29)

+He’sin4%.cos(n’t+4nt+e’+4e—w’—40)

All this would be expressed without the possibility of mistake by the follow-
ing term,
(Fe'e4+Ge'e2sin2 £ + Hsint %) . cos (14-4).

The utility of such abridgments, and the quantity of disgusting labour which
they spare, can be conceived only by those who have gone through the drudgery
of performing the actual operation.

13. It is only necessary to add that when we have, for the coefficient of a

cosine or sine, a series proceeding by powers of ¢, e, sin? —% , &c. we may always
neglect all after the lowest power. For instance, the correct expression for

v is

nt-te

+(2e~— -i—e3+95—0,e5——&c.) sin(nt+4¢—w)
L2
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5 11 . :

+(7f e?— 53;34"‘&0-) sin(2nt+2:—2%)
3 43 .

+Gé & — 6285-]-&0.) sin (3nt43¢—3 @)
103 .

-I-( et — &c)sm(4nt+4s—-4w)

+(1900907 )sin(5nt+5e—5w)

+ &ec.

but for our purposes it will be sufficient to take v = (041) 4 2¢.sin (0 4 1)

5

+ 2 ¢.sin (042) + 1063 sin (04-3) + ‘0%»4 s1n(o+4)+1097e5.sin(o+5).

For none of the terms can be of any use to us till they are multiplied, so that
the largest term of the coefficient is of the 5th order; and then all the other

parts will be of a higher order.

14. Putting f for sin -g, it will be seen that (in conformity with the remarks

in this section), the terms of R to be developed are

m
Vi —2r'r. cos (v —v) + 7}

—f2 m7r'r.cos (v 4 v — 20)
{r* =2+ r.cos (v —v) +r‘2}%‘
3 f4 mr?r2. cos (27 + 2w — 40)

C{r — 27 r.cos (v —v) + ¥

SEcCTION 3.

Expansion of cos (kv — kv), to the fifth order.

15. By (13) the value of kv'— kv is
(k— k)
+2ké.sin(140)—2Fke.sin(041) .

+i% ke? . sin (2+40) — 2 ke?. sin (0+2)

(A)
(B)
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-I—i—zke'ﬁo’-sm(:g'l‘o)_%lﬂeg'Sin(O'l'?’) e (9

+ g kdtsin (440) — P sin (044). . . . . . (D)
1097 . 1097

+ g5o ke sin(540) — G kS sin (045) . . . . . (B

The cosine is ‘
cos (k—F) .cos (A+B-FC+D+E)
—sin(k—%) .sin(A4+B+C+D+E)

or
A°+2AB 4+ B*+2AC+2AD+2BC , A*+4A3B
cos (h—k) . 41— }

2 : + 24

—sin(b—£) . { A+B+C+ D4 B AHIMBLENCEIAD | 1%(—)}

omitting all products of an order above the fifth.

16. In expanding the powers of A, B, &c., and in multiplying the expan-
sions by cos (k— k) and sin (A— %), the rules of (8) must be strictly followed.
Thus we find at length for the value of cos (kv'—kv) :

Principal term,
cos (k— k)

Terms of the first order,
+ke. cos(/c+1—/c)—lce cos (k— lc—l)

Terms of the second order,

(2k2+ lo) f2 cos(/c+2—lc) kze'e cos( — -—1)
+ (—12— f2— —g- k) €. cos (lc-—lc_—_é)
Terms of the third order,

(‘;;‘ B4 %;ﬂz_l_ ,}Z%k)e'*". cos(m—k) + (—% k?’—% k2)e'2é.cos(7c'—{—:2'—/?:—_l)
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+(§P=2#) e cos (FF1—F=2 )

1 5 13 ) : A
+(— g B+ 5 = 53k) & .cos (k—E=3)

Terms Qf the fourth order,

(24k4+ 16"3"'523’” +132") * cos(k+4 k)

-|-(-— %M-——g—ﬁ—gkz)eme.cos (m—m)

+ (—i— ft— g—i lﬂ)e'z €2 . cos (m —70——_-2)

+ (=5 it 2 B-2r) o cos(FF1-F=3)

+(24/‘4 16"3+§§Z . igﬁ’f)e“ cos(l‘ k— 4)

Terms of the fifth order,
~ 179 1097 ,\ Y
(120165+46/c4+384l&+ ls+1920k)e5cos(lc+5—lc)

+ (= g = M= g =g k) e cos (FFa—F—1)

+ (7o o+ 35 M= 15 B— 155 #2) ¢ cos (FF3—F—2)

+( 12k5+24k4+19Q '1(_)@[‘2) 'Zé.cos(m—ITZTB)

+(el4 mlc‘i-l-ﬁgi igg/ﬁ) det. cos(/c+l—-lc 4)

1 5 179 1097
4+ (_ o o o B 5 I L R lggok) & . cos (/o — k= 5)
'This development includes every argument whose coefficient is of an order
not exceeding the fifth. The coefficients however here exhibited are only the
first terms of the series which represent the complete coefficients.
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SEcTION 4.

Expansion of — I‘;k), to the fifth order.

17. We suppose — 2. Zi,s =) TP the first term in the expres-

sion of (14), to be expanded in the form

1 (0) 1) (2)
zmly —ml‘; .cos (VV'—v)—mIy" . cos (2v'—2v)— &ec.

—mI‘;k) .cos (ko' —Fkv) —

0) 1) .
where I‘; , I‘; , &c. are functions of ' and » only.

1

Let ~/{ale —_ Qa’aCOS('U/_ 7’) + az}

2 C(o) + Cé .cos (v'—v) +C(;). cos(2v' —2v)+ &e. -} Cg‘) .cos (k' —kv)+&e.

. . k),
then I‘é is the same function of 7' and r that C; is of @' and @. Consequently,

ifr¥=da (14¢), r=a(14¢): and if for convenience we use the notation
(%)
(m, n) Cy
to express that which is commonly written
g™ o®
amr.av. — %
da™.da

k
we shall have for — I‘( ) the following expression:

(%) (k) /% &) o
-C; —(1L,0)C; .¢'— (2, o)c —(3, O)C & —y 0)c 3—4 —(5,09)C; . L
k %) (%) k) ¢'? *) o3 (®) gt

—ODC . g— (LG . gg— @) C, . - 3nc . Tl —@ne, . T

(%) &) ¢ ¢* ®) g @) g

—(0,2)Cy . 9 -(1,2)C; - EL—(22)C; . L —(3 )¢, . &L

(k) g3 (k) g/ qa (k) gl? g&
—(03)C; - & —(1,3)C; - L —(23)C; .

) * ga (%) ql gt

—04)C; . & —quc, LT

*) ¢
—(0,5) C 150
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18. The value of », contracted according to the system of (13), is

a{l—e.cos(o-{—l)—%ez.cos (O+2)—%e3.cos(0+3)-—;—e“.cos(0+4)

125 -
-—38435.cos(0+o)}

whence g =

—ecds(0+l)—iez.cos(0+2)—%é.cos(0+3)——é—e4.cos(0+4)

38465 cos (0 4 5)

and a similar expression holds for ¢. Substituting these in the expression
above, and following strictly the precept of (8), we find for the development
of =T,
Principal term,

_ C(k)
Terms of the first order,
+ (1,0) €. ¢ cos (1 + 0) + (0,1) £ e cos (0 + 1)
Terms of the second order*,

{-;_ (1,0)— = (2,0) } €y e cos (2 4+0) =5 (1,1) G - decos (1 + 1)
+ {lz 0,1) — 7 (0,2) } . e2cos (0 +2)

Terms of the third order,
{ 2 (1,0) — 5 20) + 5 3y 0)} . ¢ cos (34 0)
+{ L)+~ (2, 1)}0 ¢2ecos (241)

* In this and the succeeding expressions, when a cosine is multiplied by the sum of several diffe-
(%) (*)

rential coefficients of C% N

, the symbols of differentiation are bracketed together, and C; ’ is put at the

end of the bracket.
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+ {_ (L) + 5 (1,2) } 0. ¢ rcos (142)
+{ 300 =702 +509 } ¢ ccos 0+3)
Terms of the fourth order,
{ 5 (1,0) = 1 (2,0) + 15 (3,0) — 155 (4,0) } 0¥, ¢4 cos (440)
+{-BLh+ 5@ - 56} . B ecos (3+1)
+{ - T WD+ +15(L2) — @) P € 2 eroos 242)
+ { — (11 45 (1,2) — 55 (1,3) } . ¢ ¢ cos (143)
+ { 5 0,1) = 7 (0,2) + 15(0,3) — 155 (0,4) } ¥, et cos (0+4)
Terms of the fifth order, |
{120 (1,0) = 2 20) + 5 3.0) = g5 (40 + 155 (5:0) } €5 cos (5 4-0)
b AN+ D — 5B + 550D 6 eecos (44 1)
+{ =5 LD + 5 @D + 5 (12) — 55 B — 55 2.2)
+ 153 (3,2)} C(;)..e’i" ¢ cos (3 + »2)
{3 WD+ G @D + 5512 — 55 @) — g5 (19)
+ 55 23) } . ¢23 cos (2 + 3)
+ { — LD + & (1,2) — 5 (13) + 555 (1,4)}(3;"). ¢ et cos (1 + 4)

+ {';:i—i‘ (0,1) = 55 (0,2) + & (0:3) = 55 (0,9) + 155 (0,5)} ¢ & cos (0 +5)

MDCCCXXXII. M
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Every argument is included whose coefficient is of an order not superior to
the fifth: but only the lowest order of each coeflicient is taken.

SECTION 5.

Selection of the coefficients of cos (13—8) in the development of

m
T WP —err.cos (v —v) + °}

19. For this purpose, as the general term in the expansion of
m .

Ty =21 r cos (v —v) + °} 18
tiply together the expressions of (16) and (18), to multiply the product by m,
and then giving different values to % to select those terms which have for argu-
ment (13—8). But without going through this labour we may, when a value
is assumed for %, select by the eye the terms required. As we have explained
in (7), the values which it is proper to give to % are 8, 9, 10, 11, 12, 13.

20. Thus we obtain the following coefficients of cos (13 —8):

k
- ml“; ). cos (kv — kv), we ought to mul-

k=8.

239753 178109 4217 407
m X {—- —5a0~ (0,0)* + —55= (1,0) — g3 (2,0) + 3555 (3,0)

5 1 ® . . ().
——19-2(4,0)+5§1—0(5,O)}C%.e’°. Y AP
k=09.
1955097 880290 217233 4041
{5 00) — 555 (1L0) + g 0) + T (20)

9781 189 449 -3 7
- 192 (L) — 06 (3,0) +TQ§ (2,1) 4 128 (4,0) — 64 (3,1)

1 9) 9)
+,—7—@(4,1)}C;.e'4e ¢ AR

% By - (8. ®
y (0,0) C% is meant the same as C% .
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k=10.

402625 86275 53485 1925
m X { — =5 (0,0) + —57= (1,0) — —5=(0,1) — —55~(2,0)

0367 2815 175 209 493
+ 51 (LY) — g5 (0,2) 4155 (3,0) — 55 (2,1) + 155 (1,2)
19 11 1 (10) (10)
+ @(3,1) — 51 (2:2) + 352 3:2) } CpoéBer . . . (L .BeY)
k=11.
492107 20009 52283 013
m X { 5 (0,0) =55 (1,0) + —55— (0,1) + 75 (2,0)

2231 . 2695 97 115 530
-~ 716 (131) + 392 (092) +§Q(2:1) — 16 (1:2) + 3@“4(033)

5 23 1 ) i
+5@2) -~ )+ e e L@ e

k=12,
20337 6779 2117 2119
m x4 =27 0,0 + g (L) =TT @) + %5 (L)
321 107 N 7 1
-4 (0,2) + 32 (1:2) —-Y (0,3) + 64 (1,3) — 3_2(0)4)
1 (12) : (12
+’7“6§(1’4)}C% R A
lf_: = 13.
240643 24571 1219 235
m x {25 00) + g5 O1) + 55 0:2) + 155 09)
11 1 (18) (13)
+§éz(o,4)+%(o,5)}c% S e

The arguments of the cosines multiplied respectively by these coeflicients, it
must be recollected, are not similar. Their form will be determined by the
considerations mentioned in (10).

M2
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21. The next term of R to be developed, by (14), is

J2ocos (W v —29)

r'
=2y, cos (v — v) + rg}"“'

We shall put P(f) for the general term in the expansion

r
{r* —2r'r.cos( —v) + r°} 7

0 1 2
=1T, +T - cos(/—v) + T -cos 2v'—20)+&c.

5
And Cf )for the general term in the expansion

da

= %Cf:) -+ CE;) cos (V) — v) -4 Cf:)cos 2v'—2v)+ &c.

{a?~2d a.cos (W —v) + a*}*

SEcTION 6.

Development of f2 . cos v + v — 24), to the fifth order.

22. As the multiplier /2 is of the second order, we want cos @/ 4 v — 29)
only to the third order. Now, by (18), '+ v — 24 =

QA+1)—20

+2édsin(Q+0)+2e.sin(04+1). . . . . . . . . . (A
+ 5P sin@+0)+2esin0+2) . . . . . . . . (B)
+-l—fi’3sm(3+0)+ eS.sin(04+3) . . . . . . . . (O

Its cosine, as in (15), is

A9+2AB

cos(1+1—20).{1— }—sm(1+1-29) {A+B+C——~}

Following the rule of (8) in the expansion, we find for the value of cos
' +v—290).
Principal Term,
cos (14+1—29)
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Terms of the first order,
+é.cos(2+1—20)+e.cos(l+2—20)

Terms of the second order,

+% 2. cos (3 4 1 --29)+e'e.cos(2+2—2())+—g-e2.dos(l+3—29)

Terms of the third order,
+%e’3.cos 4+1—-24+ %e’ze.cos(3+2—29)
+%—e’ez.cos(2+3—20) +—§~e3.cos(1 + 4 —29)

On multiplying this by f? it will readily be seen that £2 in the coefficient is
always accompanied by — 24 in the argument, and that there is a necessary
connexion between them. We may therefore omit 2¢; and thus we have for
the development of /2. cos (v' + v—2 ¢)

Term of the second order,

S2.cos (14 1).
Terms of the third order,

+ € f%.cos (24 1) +ef2.cos (1 4 2).
Terms of the fourth order,
-+ —g— 2 f2.cos (341) + € ef?.cos (24 2) + -g- e2f2 . cos (1 + 3)
Terms of the fifth order,
+—§—e’3f2.cos(4+l)+~g—e'2ef2.cos(3+2)+%e’e2f2.cos(2+3)

+ 2,2 cos(1+4)
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SECTION 7.

Development of cos (kv' — kv) . f2.cos (V' + v — 24), to the fifth order.

23. We must multiply the expression in (16), (of which only the terms to
the third order will be wanted), by the expression just formed, according to
the rule of (8). Thus we obtain the following expression :

Term of the second order,

—%_/'2 .cos (k41— Fk—1).
Terms of the third order,
;}lc +—é—) ef?.cos(b+2—k—1)+ (— ~1,—lc +; ef?cos(k+1 —k—2).
Terms of the fourth Qrd&,

3 9 » T T
(—Lli—lc2+i~().lc+ ﬁ}) e2f2?.cos (bk+3—k—1)

+ (‘.’;_kz'l‘?}) def?.cos(k+2—%—2)

1, 13 9
+ (57— 5k + ) @frocos (1 —F—3)

Terms of the fifth order,

1 9 55 2 y -
B R 2k D) B cos (FFA—EZT)

+(—--§L~k3—-%k2+—i—k+%)e’2ef2.cos(/ﬂ+3—lc—2)

1 -9 1 9
+(am =2k Tkt D) def cos(FF2—F=3)

1 9 55 2
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SecTION 8.

Selection of the coefficients of cos (13 —8) in the development of

rr
—m. — f2.cos (V' +v—29).
{r® — 27'r.cos (v — v) +"7~9}Tf ( )

24. The general term of the expansion is — m . I‘f;). cos (kv'— kv) . f2.cos
( +v — 24). The expression for cos (kv' — kv) . f?.cos (V' 4+ v — 20) we
have just found ; and the expression fdr - I‘Z) will be in all respects similar
to that for — 1“(;) in (18), putting Cg) for C(;). Observing that k& cannot be
less than 9 or greater than 12, and selecting for the different values of k the

terms whose combination produces (13 — 8), we get the following coefficients :

=09.

2815 493 11 1 ) (9)
m X { — B2 0,0) + 5 (1,0) — 15 (2,0 + 55 (3:0) } C, . e3f2.. (M &)

v k= 10.
4851 207 530 9 93
m X {’m‘ (0,0) — 5~ (1,0) + 55 (0,1) + 15(2,0) — 75 (L,1)
10) ' o '
+a@) P e o M ey
k=11.

525 175 57 19 3
m Xy ‘-7@— (0,0) + 45 (1,0) — 5 (0,1) + 75 (1,1) — 7 (0,2)
+ 51‘2 (1,2) }C(,:l) lerfr Lo L L (M(“)_ ¢ e f2)

k=l2.

(12) az .,
nx {52 00 +F O +3 02 + 5509 F 7. arr . e
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The arguments of the cosines multiplied by these coeflicients are not similar ;
their forms may be found by the reasoning in (10).
25. The next term of R to be developed, by (14), is

3 rrere
—_m . = - f4.cos (20 4+ 2v — 4 0).
4 {7'2—27"r.cos(v’—v)+rg}""f ( )

We shall put I‘(sk) for the general term in the expansion

r& 7,2

{r?—27'r.cos (v’—v)+rg}%

@ @ , ©) :
=3I, +T, .cos (@' —v)+T, . cos(2v'—2v) +-&e.

k) | . .
and C(s for the general term in the expansion
k3

a/Q a®

(0) )] (2)
—1 / /
(_od .cbs(v’ 2 2}5 _.20% +Cs . COS (v—v)+C5 . COS (27) 21))-]—&0.

SEcTION 9.

Development of cos (kv'—kv) . f*. cos (20 +2v — 40), to the fifth order.

26. As the multiplier f* is of the fourth order, we need to develope
cos (2¢' 4+ 2v — 40) only to the first order. Now by (13), 2v' + 2v — 44 =

@-+2) —40
+4¢.sin (140) +4e.sin(041)
and consequently cos (22 4+ 2v—4/4) =
cos(2+2—40) —sin(@4+2—44).{4¢.sin(140)+4e.sin (04 1)}
=cos(2+2— 49
+2€écos3+2—40)+2e.cos (243 —140)

Multiplying this by f* it will be seen, as in (22), that we may omit 4 ¢ in the
argument. Thus we have for the development of /4 .cos (2¢' 4 2v — 44),

Term of the fourth order,
f*.cos (2 4+ 2).
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Terms of the fifth order,
+2¢ f4.cos (3 4 2) + 2ef4. cos (2 4 3).

27. This is now to be multiplied by cos (4v'— kv), the expansion of which
has been performed in (16). Effecting this operation, we have for the deve-
lopment of cos (kv'— kv). f4.cos (2 +2v — 44),

Term of the fodrtlz order,

Sfi.cos(kF2—T%—2)

Terms of the fifth order,
($h+1)dfs.cos (FF3—F=2)+ (=5 k+1)eft.cos FF2—F—3)
SectioN 10. »
Selection of the coefficients of cos (13 — 8) in the development of
3 127

—_m. 5.
4 {r*— 2+ r.cos (v/ —v) +r“}"

J4.cos (V4 2v—490).
28. We must suppose the expression of (27) to be multiplied by %m, and by
G
the expression for — I‘;) (Which will be formed from that of (18), putting Cg)

k) . . . .
for C; ) Then giving to % different values, we must select the terms in the

product whose argument is (13—8). It is easily seen that 10 and 11 are the
only admissible values of 2. Thus we get these coefficients;

k=10.
mx{ =500 +5310 }¢” N ep
\ k=11 ;
) A )
m)({8 (OO)+16(0,1)}C;“.ef‘. SRR (N(u.ef4)

MDCCCXXXII. N
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29. The terms collected in (20), (24), and (28), form the complete coefficient
of cos (13 —8) in the development of R to the fifth order. The arguments of
the cosines multiplied by the different series are all different ; so that there

. . 8)
are twelve different terms to be calculated. Using the symbols L , &c., the
complete term is expressed thus:

L &5 cos {13t + ) — 8Bmtte) — 5
+ 17 e cos (13t +e) —8mt+o—40 — v}
+ 1L e cos {13 Wt +¢) — 8 (i) — 30 — 2}
+ L 28 . cos (13t +¢) —8me+s) — 20 — 3a}
41 e cos (131 +¢) — 8(ntts) — o — da}
41" . cos (13 t+¢) —8(nt+e) — 5w}
+ M. Bf2 cos {13 @ e +¢) — 8(nite) —3a —20)
4+ M. 2ef? . cos (13t +¢) — 8 (nt+e)— 20— — 20}
+ M de s cos (13WE4¢) —8(nt4e) —a — 20— 24}
+ M7 B2 cos {130t +e) —8ntte) — 3w — 20}
+ N g ft cos {18 (W t4¢) — 8t +¢) — o — 40}
4N et cos (13 Wt 4+¢) — 8(mEte) —a — 40}

SectIioN 11.

Considerations on the numerical calculation of the inequalities in the Earth's
motion depending on this term.

30. If we examine the expressions of (2), it will appear that the values of all
may be deduced with little trouble from the terms above, except that depending

dR . . . dR .
on Z. Since o' enters only into the coefficients, ;—; will be produced by
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differentiating the coefficients and retaining the same cosines. The coefficients
will be differentiated by changing (0,0) CS) into -5,—(1,0) C(;), (3,2) C(;) into
—i—, 4,2) C;s) + —27 (3,2) C(;), &c. Thus new terms will be introduced whose cal-
culation is rather troublesome. It is desirable, then, to inquire whether it is
pi'obable that the term depending on (2—5, will be comparable in magnitude to

the other term which has the same argument.
31. Now if we put A.cos {13 (W ¢+ ¢) —8(nt -+ ¢) + B} or A cos (13 — 8),
for one of the terms, we find

an n2ad .
E=—3.13.7.A-Sln(13—8)
whence
3.18.7%d

n’=N'+(m,A.COS (13 — 8)

(where N' is constant and = mean value of #)

de 12 ol . ona® dA
a—;—:-|—3.«13.n—’&,iA.t.51n(13—8)+~—':—l',ﬁ-.Wcos(l?,—-S)
whence
3.13 724 3.137n2%d .
e'::E’—mA.t.COS(I:S—S) +m,A.Sln(l3—8)

27 o dA .

(where E/ is constant and = mean value of ¢')

and »' ¢ + ¢ (which, by (1), is the first term of v') becomes
3.13n"%a 2% o dA .
N’t-l-E’-I—{mWA"F m. ZZ‘ZL?}SIH(L?U—S).
The ratio of the two coefficients of the inequality sin (13 — 8) is

39 ! ,dA
9 - an’—SnA'a dd

,dA
or nearly 4800 X A : & —.

N 2
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- It will be seen hereafter, that for any one of the terms whose union com-
8) dA ., ; -
poses L( ,&e., & 77 is greater than — A, and that it may, on the mean of

 values, be said to differ little from — 12 A. This reduces the ratio of the terms
to 400 : 1. Now though we cannot assert that the sum of one set of terms
will have to the sum of the other set of terms a ratio at all similar to this, yet
the great disproportion of the terms related to each other seems sufficiently to

S . NN . . d
justify us in the & priori assertion that the terms depending on Jg are not

worth calculating. It will readily he seen that the terms depending on %—% are
. < e ' . dR
still more insignificant than those depending on o

32. We stated in (1) that the variations of the elements would be sufficiently
taken into account in the expression for R if we put E 4 F ¢ for e, &c.; which
-amounts to taking only the secular variations. There will be no difficulty in
doing this for ¢, e, ', w, f, and 4: but if such terms existed in the approximate

. . . . R ‘
expressions for @' and a, they would require the use of the differentials %,%%—

But @' and @ have no secular variations: and therefore these differentials are
not wanted. We may therefore proceed at once with the numerical calcula-

. 8 L
tion of the terms L. ', L, &c.

SectioN 12.

. . g - 0 (1) (@ YN ()] k
Numerical calculation of C; R C; s C; 5 &c., C; , C; s &c. to C('T‘)
33. If we put = — 2 & for »' — v, we have

1 =107~ ™ cos 20 + €. cos 4o — &
v{d*+2da.cos2w +a} T 2 3 — U - COS w -+ 3 « CO8 40 — &c.

Integrating both sides with respect to », from » = 0 to » = 7:—, and putting S,
for the symbol of integration with respect to » between these limits,

x . (0)
4 C&

1
S, via®+2da.cos2w+a*} T
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whence

C(0)__‘4~ 1
3 T 7 S, v 4{d®+2da.cos2w 4 a®}

or, putting « for %,

(0) 4 1

Cé =zd S V{l+2acos2w+ o’}
sin 2w 1 =V1—0a? .
Now let sina' = 4/{l+2a0052w+a}’ and o = v after substitu-

tion it is found that

© 4 ' 1
3 =7Tz-z—’(1+“)'s""'4/{l+2a’cos°2w’+zx’9}

C

sin 2 o' v 1= T—a?
In the same manner, making sin &' = Vi T idenscd 747 ¥ S 1oV

and so on, we get for Cé the expression

204 Q4. (14+a™) . Sum

1
V{1l +2 2™ cos 2 ™ 4+ a(")g}

The values of ¢, o', &c. decrease very rapidly; and when & is insensible,

1

s
V{1 + 22 cos 2™ + o} becomes Su» .1 or5. Consequently

Sw (m)

()_ — (1+e) Q+e") (1+e") . &e.

the factors being continued till «( becomes insensible. The calculation is very

. . . (©)
easy; for, if we make sin@ =, sin 3'= tan? %, sin B"—tang 4 , &c. then (‘

= %sec2 g sec? - i seczﬁé"— .&c. For Venus and the Earth (Méc. Cél. liv. VI.)

. . . . 0) 1
o or —Z—, =0,7233323: using this number in the calculation, C; =7 X 2,386375.

cos 2w 1 (0) 1 (D
34. Again, V& T eda. COSQera,,} = C; .cos20— 5 C; (1 + cos 4 )

+ —,2- Cé (cos2w + cos 6w) — &c.; integrating between the same limits as

before,
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m 4 cos 2w
G =—zad-

V{l+2acos2w+ o’}

Making the same substitution as in (33), there will be produced three terms ;
of which one vanishes in the definite integral, the second is similar to the ex-
pression of this article, and the third similar to that of (33). Making a simi-
lar substitution in the second term, new terms are produced. Pursuing this
method, it will be found that the only terms whose values are ultimately sen-
sible are those which are similar to the expression of (33) : and at last we get

ih A Ui
C(1)__0(0) {smﬁ_l_su;ﬂ.su;ﬁ_l_smﬁ.su;ﬁ.smB+&c}_ L 0,0424137

35. Putting x for v’ —v, and differentiating with respect to  the logarithms
of both sides of the equation

1
V{d* —2da.cosx + ag}

1 (0) (2
C +C x+C§ cos 2y, + &ec.

multiplying out the denominators, and comparing the coefficients of cos %y,

(k+1) ok 1 * k-1 (k-1
Cy =9./c+1(:+“)05 —2/c+1Cé

1 . .
where — + « = 2,1058226. Making k successively 1, 2, 3, 4, &c., we get the

following values :

O 1 © 1 (12 1

C, =4 X 2,3863750% C; = — X 0,0903724 C; = X 0,0093812
R ) (18) 1

C, = X 0,9424137 C, = , X 0,0609432 C; = X 0,0065274
(2 1 @ 1 4 1

C, = X 0,5275791 C; =X 0,0414571 C; =z X 0,0045503
¢ 1 © (1) 1

C, = X 0,3233422 C, = - X 0,0283925 C, = = X 0,0031744

(€] 1 (10) 1 (16)

1
C, = X 0,2067875 Cy; = x 00195495  C; = - X 0,0022123

51 an_ 1 a1
C, == X 01355852 C; =— x 00135189 C; = X 0,0015356

8 1
C; =~ X 0,0010554

* LarLace’s numbers, which are somewhat different from these, are computed by the less accurate
method of summing a slowly converging series.
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. k) k)
36. For the calculation of the terms C; s C; » &e., we shall adopt the general

notation
1

a a
Jada. {7—2005%4‘7

which, it will be seen, includes those of (17), (21), and (25); and proceeding
as in (35) we shall find this general equation

(k+1) k 1 ® k—=1+4+s (k=1)
C, —Ic+1—s(7+“ C, TEF1—s s

1 @, )
=35 C, + C, cosx+C; cos2y -+ &e.

1

- a « s
Jaa. {‘;—200596‘!‘7}

And since

1
— a 541
Ja’a, {7—2008)6-]-—;17}

we find on substituting the expansions and comparing the coefficients of cos % x;,

O 1 () (k=1) (k+1)
C, =(u—+“ Cr1—=Cpn =Gy

(—;‘-+u—2cosx)x

Removing C§k++ll)by means of the relation just found (putting s+4-1 for s)

(%) s 1 * 2s (k=1
C = ‘k—s(‘; +°‘) Criti—Cn

In nearly the same manner,

(k-1) s 1 (k=1 2s *)
C. =lc+s—1(7+“)cs+l —lc+s—1Cs+l
c e . (k=1
Eliminating C,, ,
1
® _ o(k4s—1) 1 =1 k—s = T% @

Cs+1—' s '(%‘__“)2 s s '(_:_‘-_“)203

. . . ® (k=1) E+D
If in this we substitute the value of C; " in terms of C, and C; ', given

by the relation above,
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C

® 1 (+s)(k+5—1) =1  (k—s)(k=s+1) E+D
s+1= 77 3 is C - Cs
o

s ks
o . sin®g

in which L 5 O T is ot f = 2,3015505

(= -2

®  sin®B 4k —1 ‘(k—x) (k+)

. . 1 ;
37. Making s =, C, =g - Ry G ) Using this
formula,
4) 1 9) 1 14) 1
C; = X 3,403041 C; =X 0,904785 C;_ = —r X 0,215803
5) 1 10) 1 15) 1
O = x 2652550  C, = x068208  Cy = X 0,161251
® 1 (1) 1 (16) 1
C% = -1 X 2,047192 C% = X 0,513799 C% = X 0,120579
) 1 ' 12 an 1
C; 7 X 1,668093 C; ) 1, X 0,385521 C% = X 0,090452
8 1 8 1 )
C; =— X 1,193991 Cf,, - X 0,288655
.8 & _ sin%B (2k + 8)(2k +1) =D
38. Makings =, C, = Goos' B ° 7 C,

_(2k—3) k(Qk -1 (""” 1 } By the use of this formula,

Q) 1 (9 (18) 1

C, = o5 X 27,43922 C, = ;1,— X 12,88246 C, = X%5,24565
6) 1 10) 14) 1

C; == X 23,14387 €, = X 10,39741 C; = — X 4,12790
™ 1 an 1 s 1

C, =z X 19,25046 C, =4 X 832969 C, = X3, 23120
8) 1 ’ 12) 1 (16) 1

c; = X 15,82608 C; = X 6,62055 C, "= X 2,51561

® _ sin®B (2Fk + 5)(2k + 3) C(k-— 1)
3 — 10 cos”ﬁ k 5

39. Making s =, C

RUZLICLE) CZ‘“)}. Thus we get



IN THE MOTIONS OF THE EARTH AND VENUS. 97

(6) ‘ 1 9 1 (12) 1

C, = X 221,8780 C, = X 143,6296 C, =7 X 84,9489
7 (10) 1 (13) 1

CE’:;I,— X 194,2735 C, = X 121,5988 C, = X 70,2184
(8) 1 (11) 1 (14) 1

C; = - X 167,9770 C, "= X 102,0404 C, =4 X 57,6762

) 1
Cf} =— X 47,1003

L1 B B [(@k+7) (k4 5) =1
40. Making s = 3, €} = 7o.rg { A c,

_@E=DEE=) (¢ ‘)} . From this,

(7) 1 (10) 1 (13) 1
C, = _ X 1830,596 C, "= X 1266,709 C, =7 X 807,945
8) 1 11) 1 14) 1
C; =— X 1636,049 Cf} = — X 1099,213 C; = 1 X 685,214
) (12) 1
CE, &l 7 X 1446,655 C% =X 946,016

. 9 ®  sin® @r+9)(2k+17) k=1
41. Making s = -, C, = 1800S2ﬁ{ A C

9
z

_ (k= Q)Ic(gk =7 C(:H_l)} . From this,

® 1 (10 1 (12 1
C,, == X 15366,90 C,, = X 12473,68 C,, =4 X 9786,59

11
T

9)
=L xs0077a ¢

1

€3] 1 (18) 1
SEcTION 13.
Numerical calculation of (0,1) Cs , (1,0) C‘3 , &e.

42. It will be sufficient to form, by differentiation, the expression for one of
the differential coefficients of each order, as the others can then be derived by

. . ® . . .
simple addition. For C; " is a function of &’ and @ of — 1 dimension: hence
MDCCCXXXIL. o
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d (*) d 6] %) Q) *) ®
a'ZiE’C‘ +a;C =-C, or(1,0)C, +(0,1)C =—C

, - Again (as
. dt *®) . . , . .
another instance) TP T2 C, isa function of ¢’ and a of — 5 dimensions; con-

, & *) &k Q] d* Q] o g
sequently @’ o——— C " + ag—5 7= € = — 55755, C, ' or, multiplying

3
both sides by a%a, (4,1) € +3,2) €=~ 531", It is indifferent

which coefficient of each order we calculate first ; and for the algebraical pro-

cess it is rather most convenient to differentiate successively with regard to
the same quantity (as o).

d 1 1
430 NOW ) = . =
‘ dal vda' (d a s
| { %t —2cosy) }
1

1

— ==

. 7 s
@ yda §-+%—2COS)¢)

a

1 1
T

1
s+ 1
2cosx)

+s(—%+a%)v%z'(%’.+§,—

or, taking the coeflicient of cos %y in the expansion on both sides,
d ® 1 1 0 1 a (%)

7aC =—5-aC +(=2+a)s-Cp

Differentiating this formula with respect to ¢/, and using the same formula to

. . e k)
simplify the differential coefficient, we get 57—z C, . In the same manner

k . e ed B .
;gg CZ )’ &ec. are found ; multiplying them (beglnnmg with 7~ Cﬁ ) by &, a”2,
a3, &c., we obtain the following expressions :

k) 1 1 (*)
1,0 6= -5 ¢ + (=% +2)s.Cp

k 3 (&) 1 (k) 1 2 *)
(2,0) C§)=+—Z Ci +<—;-—3w)s.Cs+»l+(-—;-+a> s.s4+1.C

Q) 15 ® 9 1 ®
30 €=~ 249 (= Lse)s.c,
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+_Z_(_:? _ )(._7‘c +5a).s.s+1.C§k_|),2

+(—-% +w)3.s.s+l.s+2-C§’is

(%) 105 ()  15/1 (%)
(4,0) Cs =+-l—6- Cs +—2'(j; —-706) S°Cs+l

+{(-g—- -01‘—-—1;“).(-:7-—704) —6} .s.s+1.C§k_7__2

+2(_%+“)2.(_017_7u).s.s+1.s+2.C£k_|)_3

+(-2+¢) s.5Fi.5F3.5F3.C,

. *) 945 (B = 525 1 *)
(5,0 C, " = — 30 C, +"1-6' —— 19 S'Cs+1

+Z§{_(%—3a) (-:;—704) +4}s.m.c§’ig |
+1215-(—i- — oc){— (—;‘1——305) (—;1‘——706) +4}s-m-m-0§23

+_g—(-;1:__w)s.(__;‘__l_ga)s.s-l—l.S+2.S+3.Cs(,;)_4

+(=2+e) s ST LT EFEF .0,

. . 1
44. Using the same value of « as before, and making s = 3, these expres-
sions become, ’

k) k
1 €, — 0,3295790 . C(%)

®
(1,00 C; = —

% D) k
(2,0) Ci:) =+ c;) — 0,3937533 . C; + 0,3258670 . C;)

k ) k) (%) k)
(3,0) = - %5- C; + 2,5134426 . C; + 1,6567557 . C, " — 0,5369945 . C;
02
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105 (%)
(4,0) € =+ % ¢ — 13,8031342.. € — 6,6080500 . C

) 13
~ 5,9973139 . .C(, + 1,2388750 . CE,)

(5,0) € = =22 ¢ 4 84,1230554. c; ' 4 154872787 . C

(%)

k k
+ 10,2085636 . C;) + 24,0925995 . C,” — 3,6747654 . c®

. 3 .
45. Making s = 7, the formule give

1 (’f)

(1L0) €’ = — 5 € — 09887370

9 2
20 ¢ =+2 ¢ — 11812500 ¢ + 16208350 . €

(%) 15 @) 10 D) X
(3,0) C% = -—-——g C; + 7,56403278. C% -+ 8,2837785 . C; — 3,7589615 . C;)

. 5 .
- 46. Making s = 3, the first formula gives

k) 1 ) )
Lo ¢'=—1 C; — 1,6478950 . CE,I

2
T (0 0 .
47. Substituting in these the values of C% 5 C% , &c. found in the last sec-
tion for different values of k, we form the following tables:
For the development of the first term,
1
k=8 (0,0) Cf;) = — x 0,0414571
(1,0) 0(8) — x —0,414243
1

(2,0) C(B) = x 4,71815

3,0) C (8)—_- 1 x — 61,059
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1
,0) ¢ = —; x 897,236
z

(5,0) cf;) =%, x — 14993,97

k=9 (0,0) €8 =, x 0,0283925
(1,0) CS) =1 x — 0,312304 1) ¢ = 1 x 0,281001
(2,0) c;") J_, 3,86300 (1,1) cg) = -;—, x — 3,23821
3,0) CS) =1 x 53,5643 @,1) cf;) =1 x 41,9733
(4,0) cg’) = .;_, % 832,244 3,1) Cg’) = -;—, X — 617,087
(5,0) Cs):zl‘r % —14512,03 (4,1 c(") _’_, % 10351,71
=10 (0,0) c(“’) = 1 % 0,0195495

0 =L« 0231856  (0,1) U =L x 0,215306
3 a 5 a'

1

(2,0) ¢ = = _; % 3,13393 (1,1)Cg°) L
2

!

% —2,66422  (0,2) cg°) = % x 2,23361

R

(3,0) Cg") = % x — 46,3021  (2,1) Cf;o) = T:T X 36,9903 (1,2) Cf;")'.: 1 % — 28,9076
4,0) C;m) =L x7e108 @D cf;")«: Do —575520  (2,2) C;“” =1 x 427,550
(5,0)C (“’) -1-,~ x — 13860,27 (4,1) C;“” = _17 x 10054,83  (3,2) C;“’) =7}, x — 7177,23
k=11 | (0,0) cé”’:i, x 0,0135189

a

1,0) c;“) =1 x = 0,176007  (0,1) c;”) 1« o0,162578
@0 =1 x2s020 @, c;“) =1 x —zum001  (02) c;“) =1 x 1,84485
z

an _ 1 i

GOV =1 x —307288  (21) c‘“) L xsglee2  (1,2) c;“).—; 1 x ~ 2,650

Y

(0,3) C(“) =% x 201176 (4,0)c"V =_i_" x 687,024 (3,1) C;“) = % x — 528,109

1
a

©2,2) Cf;l) =1 x399,460  (1,3) c;“’ = -;17 x — 296,851  (5,0) c;“’ = 1 x~13066,87

Q
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(11) 1 (11) 1 11 1
(1) € == x 9631,75 (320" =- x —6991,20 (23) c; )=7 x 4993,90
k=12 (0,0) Cg” = -17 x 0,0093812

1 L« 0,122369

(12) _ _ (2) _
(L) €7 = = x — 0,131750 (O,])Cé =

(2,0) cf;” =1 x2059 (L) C;”’) Lx — 175200 02) c;”):l x 1,50735

a'
(3,0) CE;Q) = .ET x — 33,6822  (2,1) c;”) = 7} x 27,6354 (1,2) C(;) = -,;7 X — 22,3791
1
03P =Lxizeno @0 =L w2806 @) ) =1« — 48137
@c™® =L ys07505 (1,3 = l, x — 278,079 (0,4)C? = 1 & 206,651
3 a % a 3 a ]
GO =t 126030 @nCT=T 010506 @2V =L x —671057
(2,3) 0;12) =1 x 487640 (1L4) C_;m) = _;- X — 3486,00
k=13 (0,0) C “3) =1 x 0,0065274
(1,0) cgs) =-17 x —0,008398  (0,1) c“s) = 7:- % 0,091871
2,0y =% % 1,60062  (1,1) c(ls) L —1,40382  (0,2) c(m’ 1 x 1,22008
2
G0 cM® =L 98308 (2 =L ye35000 (1,2)¢" =21 x — 19,2804
3 a 3 a' % a
(0,3) C(“) _17 x 15,6202 40 CIY =1 x540741  (3) =1 — 27,53
(13) _ (1s)_ 1 (13) _ 1
@2 V=t xammsm a3 C]T =1 x —26871 0)¢ = x 195,854

,0) 19 =% x — 1120535  (4,1) c;”) =1 xmoLes (2 Cf;s) =1 x —6363,06

R

’

2,3) c;”) .‘_, x 4696,32 (1,4) c;”) =$ x — 341446  (0,5) C;“”) =1 « 2445,19

]

For the development of the second term,

k=9 ©,0) P =1 0,904785
2 " a
(1,0) cf:) =_al_, —'13,18976
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20) ¢ = _’T x 219,4819
T

30 ¢ =1 x —a152,686
=z

©0,0) " = 1 0,682035
z

k=10
(1,0) Cf;") =% x —10,62177 (0,1)05}10) =1 x 9,93883
(2,0) CE“’):.}, x 186,3554 (1,1)0(%10)=$ x — 165,119
(3,0) c‘“” L x —3677,005 (2,1)0;“’) =1 x3n8,02
=11 00 ¢t =1 x 0513790

1,0 ¢ = _;_, X — 8,49277 o1 ¢ = .al 7,97897
2,0) ¢ =1 x 156,803 (1,1)0(311):-‘% x — 139,818  (0,2)C""" =1 x 125,8604
= T v

@0 M =L —s22a776 2,1 ¢t =L x 2754,365
E z

1,2) = % x —2334,910

5

k=12 ©0,0) ¢ = ..17 x 0,385521
7

_'_ x 6,36212

a

(1,0) ¢ = 1« —6,74764 (0,1 0(12) =
(1,1 ¢ = _‘_, x —117,3729 (0,2) C(w) =1 x 104,6487
T

a'

(2,0) CE”’) =1 & 130,8682

(l'

x 2410471 (1,2) P = L« —2058,352
T

(3,0) C(‘” 1w —2803,076 21 =21
a 2 a

©03) ¢ =1 174,406
T

!

Q

For the development of the third term,
0,0) ¢ = L x 1039741

(1,0) C(s“” = _;_, x — 205,5808

(0,0) C(“) 1 X 8,32969

et o1 ¢ =L x 1639870
z

(1,0)C; x —172,3167
z

1
=
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48. Employing these numbers in the calculation of L(S), L(g), &e. M(g)..

(10) (10) (1) . .
M ;&c. N "and N , from the expressions in (20), (24), and (28), we

obtain the following numerical values:

®)
L~ =2 x — 333,0969

®)
L~ =7 x 1273,4929

L' = 2% — 1945,7913
L= 2 X 1485,3152
L= 2 X — 566,5632
1% = 2 X 86,3635

M = 2 X — 503,4795
M = 2 X 1088,9148
M =2 — 7870381
M = 7 X 190,0487
N = 20X — 85,3347
N = = X 58,8603

49. The computation of these quantities has been effected by means of alge-
braical operations of great complexity, and numerical calculations of no in-
considerable length ; and it is not easy to find in the operations themselves
any verification of their accuracy. This has imposed on me the necessity of
examining‘ closely every line of figures before I proceeded to another. I have
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had the advantage however of comparing the calculated values several times
with the values which I calculated nearly four years ago. At that time I
developed the principal fraction in a different manner, and I expressed the

quantities C(f) &ec. by different formulee ; and the fundamental number differed

by a few units in the last place of decimals. The numbers admitted of com-
parison at several intermediate points before arriving at the final results; and
one small error was discovered in the old calculations, and one in the new
ones. Upon the whole, I am certain that there is no error of importance in
these numbers ; and I think it highly probable that there is no error, except
such as inevitably arise from the rejection of figures beyond a certain place
of decimals. It is impossible to assert that the last figure preserved is correct,
or even the last but one; but I do not think that the last but two is wrong.

SEcTION 14.

Numerical calculation of the long inéguality in the epoch, depending on
(13 X mean long. Earth — 8 X mean long. Venus).

50. The most convenient form in which the expression of (29) can be put is
the following.

® O , (10) ,
{L €%, cos(ba) 4L .ete.cos (4@ +w) + L .c%e.cos (B 4+ 2w)
1) (12)
+ L .?B.cos(29' +3w)+ L .t cos (v +4w)
+L(13).e5.cos (5 =)+ M(g).e’3f2.cos (3= 4 29)
+M" e2ef2.cos (2a'+at+20)+ M. s cos (o +2a+20)
+ M(lg). ef2.cos(Bw+ 24) + N(lo). € ft.cos (= + 40)
+N(u).ef4.cos(w+40)}cos{l3(n’t+e’)-—8(nt+e)}
® . . , ©® . , w o
-l-{L .é5.8in (ba') + L .dte.sin(4w' +w) + L .. sin (3o 4 2%)

+ L. 26 sin 2 + 37) + L. d et .sin (o + 4 )

MDCCCXXXII. P
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+ L% 6.5in 5 w) + M. 872, 5in 3 ' + 2 0)

+M . eef2 sin @0 twt20) + M. & @ f2 sin (@25 +20)
+M™ 82 sin Bw+20) + Nt sin (@ + 40)

+ N et sin (= + 40)}.sin{13 (Wt +¢) — 8t +2)}

The elements ¢, ¢, &c. are all subject to small permanent variation ; and
(considering the great length of period of the inequality which we are calcu-
lating,) those variations may have a sensible influence upon it. It is prudent
therefore, as well as interesting, to take into account these variations.

51. Let P and Q be the values of the coeflicients of cos {13 (#'t 4-¢')— 8 (nt+¢)}
and sin {18 (W't 4 ¢') — 8 (nt 4 ¢)} in the expression above, giving to the ele-
ments the values which they had in 1750. Then, as all the permanent varia-
tions are small, the powers of # above the first may be rejected, and the coeffi-
cients at the time ¢ after 1750 may be represented by P+ ptand Q + ¢ ¢
Thus the term of R becomes

(P+4pt)cos {13 (n’t+e')—-8 (nt4e)} 4+ (Q-+qe)sin {13 (Wt+e)—8 (nt4:)};

_ . dR dR .
and by (2), omitting the terms depending on £ and —— for the reasons in (31),

%ﬁt, - a(P+Pt)sm{13(nt+e’)—8(nt+e)}
3gna(Q-I—qt)cos{13(nt+e’) 8(nt+e)}

§—§-'=+39” a(Pt+pt2) sin {13 (W' ¢ 4¢) — 8 (nt+¢)}
SanQ

Qt+qg2)cos{13 (Wt +¢)—8(nt-+e)}

Integrating these, (considering #/, ¢, n, and ¢, on the right-hand side, as
constants,) and substituting in the expression 'z + ¢, it becomes
Nit+ E

397" d P+ pt 2
t T @ —sap T (W qsm‘}sm{l?’(n t4d)—8(mt+e)}
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3972 [ —Q—gqt 2
+ 9:.’ - {(131?— Sqn)3+(13n’£8n)3} cos {18 (W't 4¢) — 8 (nt 4 ¢)}

The terms added to N'¢ 4 E' constitute the inequality in the epoch.

52. The values of the elements for 1750 and. their annual variations are
given by Larrace in the Mécanique Céleste, 2™° Partie, Livre 6, N° 22 and
26. To give them the form necessary for our purpose, we must from the varia-
tion in a Julian year deduce the variation for a unit of time. Now a Julian

year is (nearly) the time in which the angle » ¢ increases by 2 = ; its expression
. 2 . . o s !
is therefore ;7—' Consequently if we multiply the annual variations by —2%, we

' /
shall have the variations in a unit of time : and if we multiply them by g-;, we

shall have the variations in the time #. With regard to the quantities ', &ec.
introduced by Larrack for the purpose of altering his assumed masses if neces-
sary, it may be observed that the only planet which materially affects the
changes of the elements, and whose mass is known with certainty to require a
change, is Venus herself. The investigations of BurckaarpT and BesseL lead
to the same conclusion as my own (Phil. Trans. 1828), namely, that the mass

. 8 1
of Venus is -5 X the mass assumed by DELAMBRE, or ;57577 of the sun’s mass.

I R . . .
Larrace supposed it 363157 of the sun’s mass: the comparison of these gives

Larrace’s p' = — ,045. In using LarLace’s expressions, therefore, I shall sup-
pose ' = — ,045, and w, p', 4", &c. = 0. For convenience, the centesimal *
division will be retained.

53. Thus we have

__ 650198000 .
399993009

¢ = 0,01681395 — 0,0000000729 X 7' ¢
= 0,00688405 — 0,0000001005 - X 7' ¢

f = 0,02960597 + 0,0000000172 X 7' ¢

&' = 1098,5790 + 0,0000091017 X 7' ¢

n

* Borpa’s tables, published by DerLamBrE, have been used in these computations,
+ The variations of the elements of Venus do not agree with those of LiNpENAU’s tables.

P2
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@

0

= 1428,1241 — 0,0000018080 X 7' ¢
= 825,7093 — 0,0000139997 X 7' ¢

The node and inclination are those on the earth’s #rue orbit. All the coefficients
of 7' ¢ are in decimal parts of the radius 1, and not in parts of a degree.

54. From these we deduce the following values, the figures within the
brackets being the logarithms of the numbers.

®

d L
m

4 L(S)
m

.

od L
Pt

y L(IO)

m

o L(10)

m

(11)

d L

m

.

> =+ (91,1283485) — (86,46438) . 7' ¢
dte = 4 (90,7405229) — (86,24488).7'¢
€32 = 4 (90,3526973) — (85,97806) .7’ ¢
€268 = - (89,9648717) — (85,68477) .7 ¢
det = -+ (89,5770461) — (85,37453) .7 ¢
& = 4 (89,1892205) — (85,05252) .7'¢
3f2 = 4 (91,6197677) — (86,69331) .7' ¢
é?ef? = 4 (91,2319421) — (86,57650) . 7' ¢
€ e f? = 4 (90,8441165) — (86,35426) .7'¢
ef2 = 4 (90,4562909) — (86,08606) . n' ¢
dft =+ (92,1111869) — (86,41479) .7'¢
eft =+ (91,7233613) — (86,81239) .%'¢

cos (52') = + (2,3572098) + (98,04404) . 7' ¢

sin (5 »°) = — (2,3859510) 4 (98,01530) . 7' £

cos (4@ + ®) = — (3,0841670) — (98,12469) . 7’ ¢
sin (4@’ + @) = + (2,5856285) — (98,62323) . 7’ ¢
€08 (30’ + 2w) = + (3,2799989) — (97,97020) . n’'¢
.sin (30" + 2w) = 4 (2,5956498) + (98,65455) . "

.cos (20 + 3w) = — (3,0497482) -+ (98,09507) .7 ¢



o L(ll)

m

12
o L( )

m

o L(m)

m

(1)

a L

m

o L(ls)
m

a M(g)

m

4 M(9)

m

J M(IO)

m

o M(lO)

m

) a’M(u)

m

(11)

adM
m

(12)

aM

m

12
o M( )

m

(10)

ad N
m
(10)

a N
m
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.8in (2@ + 3@) = — (2,9885633) — (98,15626) . n’ ¢
.cos (@ + 4 ) = + (2,2816808) — (96,99874) .2’ ¢
.sin (@ 4+ 4@) = -+ (2,7269678) + (96,55345) . ' ¢
. cos (5 @) = + (1,1565787) — (96,88643) .2/ ¢
.sin (5 @) = — (1,9302586) — (96,11275) .7/ ¢
cos (30" + 2 6) = — (1,6642318) — (96,54170) . ¢
sin (3@ + 20) = — (2,7001492) + (95,50578) . n' ¢
ccos @'+ w420 = — '(2,64682835 + (98,06223) . 7' ¢
.8in @@ 4+ @ + 20) = 4 (2,9976206) + (97,71143) . 7' ¢
.cos @ + 2w 4 20) = + (2,8001796) — (98,02467) . ¢
.sin (@ + 2@ + 20) = — (2,6722198) — (98,15263) .7’ ¢
cos 3o 4 20) = — (2,2752440) + (96,91212) .7 ¢
.sin (3@ + 2 0) = + (1,3880761) + (97,79929) . ' ¢
.cos (&' + 40) = — (1,8370062) — (97,37538) .n' ¢

.sin (o' + 40) = — (1,7042256) + (97,50816) . 7' ¢

109
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(1)

TN cos(w +40) = + (1,3847917) + (97,49139) . n'¢
! (11) &
CN__ sin{w + 40) = + (1,7204138) — (97,14677) .o/t

55. Substituting these in the expressions of (50), we find

m m
P = — 2 x (94,1302623) p =+ X (89,08397) . %
Q =—7 x (94,0722348) g =+ — X (89,47976) .7
. 1 1674883 . .
and making %z,— = fo7a1i» and 137 — 8n = — f@&%@éﬁﬁb X 7/, in the expression

of (51), we find for the long inequality

{— (94,8787039) + n' ¢ X (89,82780)} . sin {13 (' ¢ + ¢) —8(nt+te)}
+ {4 (94,8139258) — ' ¢ X (90,22359)}.cos {13 (W't + ¢) — 8 (nt +¢)?

which may be put in the form
{+(94,9992364) — n' £ X (90,20461)} .sin {8 (¢ +¢) — 13 (W' + ¢)
+ 40° 44' 34" — 't X (94,91918)}

where the degrees, &c. in the argument are sexagesimal. The coefficient is ex-
pressed by a multiple of the radius: to express the principal term in sexage-
simal seconds, it must be divided by sin 1”. And if Y be the number of years
after 1750, since »’ = mean motion of the earth in Y years =2 7.Y=6.603.Y
in seconds, the .coefficients of n'# must be multiplied by 6.60%.Y, and their
values will then be exhibited in sexagesimal seconds. Thus we find at length
for the inequality

{2”,059 — Y X 0”,0002076} X sin {8 (nt -+¢) — 13 (o t+<)
4 40° 44’ 34" — Y X 10”,76}.
56. The mean longitudes n ¢ + ¢, n’ ¢ 4 ¢, are measured from the equinox of
1750. But if /, 7, are the mean longitudes of Venus and the Earth measured

from the place of the equinox Y years after 1750, then (in consequence of pre-
cession) ‘
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nt+e=1—Y X 50",1
Wt +&=0—Y % 5071
Consequently 8 (n¢ 4 ¢) — 13 (n;t +¢)=81—1301+4Y x 250”,5.
Substituting thls, the expressmn for the inequality is
127,059 — Y X 07,0002076} X sin {81 — 137 4 40° 44' 34" + Y x 239”7}

57. I have compared the calculations of the principal part of this inequality
with the calculations made in 1827. Two errors were discovered in the former
calculations, one of which was important. I am quite confident that there is
no sensible error in the results now presented. The terms depending on Y
were not calculated on the former occasion : but the calculations now made
have been carefully revised.

SecTION 15.
Numerical calculation of the long inequality in the length of the axis major.

58. This being very small, we shall omit the variable terms. Thus we have

%=+QC:“ sin {18 (W't +¢) —8(nt+e)}
26"'“'262 cos {13 (Wt ¢) — 8 (nt +¢)}
whence
a'=A’—73—Q%%—7;.]—?—ﬂl.cos{l?)(n’t+s’)_s(nt+g)}
—E?% Qa .Sin {13 (W't 4+ ¢) —8(nt 4 ¢)}

=A'—d.(92,31993) .cos {13 W t+¢) —8mt+ o}
— ' .(92,26190) sin {13 (' 4+ ¢) — 8t +2)}

= A’ — & X 0,000000027756 X cos {8 nt 4¢) — 13 ' ¢+ ¢) + 41° 11"}

The magnitude of the coefficient is barely 75th of LapLacE’s minimum, and
this inequality may therefore be neglected.
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SEcTION 16.

Numerical calculation of the long inequality in the longitude of perihelion.
. do' | . 'a! dR .
59. The expression for —— being — :%%, . 7a» the part which we have to

consider may be put under the form

d='

14 8) 9
77:-%—3;.{5L( L&.cos(50) + 4L, e cos (o’ + w)

431 B¢ cos (30’ +2w) + 2L, 2. cos (2’ + 3 )

+ L. ¢ et cos (@ +4w)+ 3 M(g). €% f%. cos (3a" + 20)
+2M™. 22 . cos @o' L w-20)+ M. & 2£2. cos (o' +2w+2 )
+ N(w). € f4.cos (& + 46)}cos{13 Wet+¢)—8mt+ s)}

na

8 . . , o , . ’
—W{5L( .e5.sm(5w)+4L( .ete.sin (4" 4 »)

)
+3L. e sin(3a’ +20) + 2L 28 . sin (20" + 3 )
12) ., )
+ L. ¢ et sin(@ + 40) +3 M. &3 f25in (307 + 20)
10 , . ’ .
+2 M .€2¢f?.5in(2w +m+20)+M(u). de’ f2. sin (v’ + 2w 4 24)
10) . ’ . ’ ’
+ N ¢ /1. sin (o + 4(9)}sm{13 Wt +¢) — s(nt+s)}
which (neglecting the variable terms) is found to equal
7' X (92,35866) .cos {13 (n' t+¢) — 8(nt+¢)}
+ 7' X (92,60190) . sin {13 (W't +¢) — 8 (nt =+ ¢)}
Integrating,
o = II' — (94,73673) .sin {13 (W't + ¢) — 8 (nt +¢)}
+ (94,97997) .cos {13 (Wt + ¢) — 8 (nt + ¢)}

or
o' =1II' 4 17,1250 .8in {8 (0t +¢) — 13 (W' ¢ +¢)}
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+ 17,9697 .cos {8 (nt +:¢) — 13 (W't +¢)}
= IT' 4 2”,2683 .sin {8 (n¢ 4 ¢) — 13 (W' ¢+ ¢) + 60° 16'}

SEcTION 17.

Numerical calculation of the long inequality in the excentricity.

. . de wd dR . . . .
/60. On forming the expression for =, or Td dw it is immediately seen

that the coefficients of cos {13 (¢ +¢) — 8(nf+¢)} and sin {13 (n'¢ +¢)
— 8 (nt+¢)} are related to those above, and that

% = + €n’ X (92,60190).cos {13 ('t +¢) — 8(nt 4¢)}

—én’ X (92,35866) .sin {13 (W't +¢) — 8 (nt+¢)}

Integrating,

€=FE —¢ %X (94,97997) .sin {13 (Wt +¢) —8 (nt +¢)}

— ¢ X (94,73673) .cos {18 (W' ¢ +¢) — 8 (nt 4-¢)}
=F — (92,96240) cos {8 (n £ + &) — 13 (' £ + ¢)}

+ (93,20564) .sin {8 (nt +¢) — 13 (W' ¢ + ¢')}
= E/ — 0,0000001849 . cos {8 (n ¢ +¢) — 13 (' £ + &) + 60° 16’}

The principal inequality in the radius vector is that produced by the last
term: it is however too small to be sensible.

PART II.
PERTURBATION OF THE EARTH IN LATITUDE.

SecTIoN 18.

Ezxplanation of the method used here.
61. If ¢’ be the inclination of the earth’s orbit to the plane of 2y, and ¢ the

longitude of the node, then

MDCCCXXXIL Q
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ag ' a 1 dR
dt= T @Wyi—er " ¢ " dg
de¢' wd 1 dR
E?_+y'vfre7§' ?PT. ae

or, neglecting €2,

av_ _ad 1 4R
dt — = @ ¢t de
a¢ _ W« 1 4R
dt — T 7ol ¢ - dbr

These expressions are true only when ¢ is so small that its square may be re-
jected. This restriction, however, is convenient as well as necessary. For in
the expansion of R we shall have to proceed only to the first power of ¢/, and
make ¢' = 0 when we have arrived at our ultimate result: consequently the
same values of ¢ and ¢ must be employed as in the first Part.

62. The only term of R, which by expansion will produce terms of the
form cos (13 — 8) with coefficients of the fifth order, is the fraction

—m

VAW — 2P + (Y —yP + (& — =)}

o’ =1’ cosv’ (neglecting ¢?)

For substitution in the denominator we have

Yy =rsine
g =r.¢ .sin( — ¢
& =1 {cos (v — 0).cosd — cos¢.sin (v — ¢).sin b}
=17 {cos (v — 0).sind 4 cos ¢ . sin (v — d) . cos 4}
g =r.sin¢.sin (v — 0)
whence the fraction is changed to

—m
W {B—=27'r.cos(v —v) +7°+2r'r f 2. cos (U —v) =277, £, cos (v +v—20) — 427, glf . sin (v —§).sin (v—0) }

where f is put for sin % and 2 f for sin ¢, on the principle of (13). The part
of this depending on the first power of ¢' is ’

' —m.2rr.¢ f.sin (v —0).sin (v — §)
{r* —2rr.cos (v —v) +7° + 27 r. f2.cos (v —v) — 2o r. 2 cos (v 4 v —26}F
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of which, on the principle of (8), &c., we are to take only
m.r' r.¢ focos (v + v — 0 —0)
jr*—2r'r.cos (v —v) + 1 =27 ». fP.cos (v + v — %6)}""’

Expanding the denominator by powers of /2, this becomes

m.oa'r g focos(+v—8—08)  m.372r. ¢ f3. cos (W + v—§ —0).cos (v'+ v— 20)

{M" —2rr.cos (v —v) + 7-?}"} {* —27 r.cos (v —v) + r‘z}’b}

or v
m.r' r. ¢ f.cos (v +v— 4 —0)

{”*—2rr.cos(v —v) + 7"3}%’

+ 3 m.2r ¢ f3cos (20 + 20 — ¢ — 30)
2 {"* =27 r.cos (V—v) + r‘*’}’s‘"

SEcTioON 19.

Selection of the coefficients of cos (13—8) in the development of the two last
Jractions.

63. If we compare the first fraction with the fraction developed in Section 8,
we perceive that the following are the only differences between them. The
signs of the coefficients are different: and in the coefficient of the new fraction
(and in every term of its development) there is ¢ instead of f, with the corre-
sponding change of argument. From this it is readily seen that the coefficient
of cos (13 — 8) will be formed from that in Section 8 (Art.24), by changing the

sign and multiplying by }L; the argument always being changed according to

the rules of (9). The coefficient is therefore

9 . 10 ; 11) 12)
—M L3 f— M ).»e'2eq’>’f—- M, eerg f— M .é9 f.

64. If we compare the second fraction with the fraction developed in Sec-
tion 10, we see that there are the same differences as those mentioned above,
with this additional one, that the multiplier is double of the multiplier of the
fraction in Section 10. Thus the coefficient of cos (13 — 8) is found to be

10) 11
— 2N .e’qo'f3—2N( ).e¢’f3
The sum of the terms in these two sets, multiplied respectively by the cosines

of their proper arguments, constitutes the whole term of R which we have to

consider.
Q2
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SEcTION 20.

Numerical calculation of the perturbation in latitude.

9
65. The first of the terms found in the last section is — M() e3¢ f. cos

{13(@t+¢) —8(nt+¢ — 3z — ¢ —0}. With respect to this term only,
9
%—?:— .3 f.cos {13(n'¢t4¢) —8(mt+¢) —3a —— 0} ; whence
(9)
, n'd n eaf , ,
0=®'_W dcp’ ®+ .13n/_8n.jgsm{l3(nt+e)
—8(nt—|—e)—3w—9-—(9}.
And
9
%%:-—M().6'3(p'f.sin{l3(n’t+e)——8(nt+e)—3w’—-—é)’-—0};
‘whence
, ik _ g M W, L
qo.—<I)+#¢, = @' 4 % B —gn €S cos {18(@14¢)

—8(nt+s)-—3w’——9’—0}.

The Earth’s latitude, neglecting small terms, is ¢". sin (#’ ¢ 4 ¢ — ¢). And
from the expression above, sin (7’74 ¢ — ¢) =

sin (' 1 4¢ — @) =

o n f ’ , N
57w —%n .—J.cos(n t+ ¢ — 0).sin

(13 t4¢)—8nt+e) —3a" —0 — 0}
Multiplying this by the expression for ¢', and putting ¢, ¢, for @, @', in the
small terms, we find for the latitude
M(g)a n
Y .sin(nt4¢— Q) — s =8-S -sin{12 (@'t + ¢)

—8(nt+e)—3w—-ﬂ}

and the last part, or the perturbation in latitude, is
, ®
n

e M . , , : ,
— 57— ¢S a.s1n{l2(m‘+e)—8(nt+s)—3w_g}

Similar expressions will be obtained from all the other terms.
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66. If we put for sin {12 (#'¢ 4 ¢) — 8 (nt 4¢) — 3o’ — 0} its equivalent
cos (3w 4 24).sin{12 (@ ¢+ ¢) —8(nt+¢e) + 0} —sin (8w’ 4 20) . cos
{12 (W't + ¢’) — 8 (nt -} ¢) 4 4}, and similarly for the other terms, we find for
the whole coeflicient of sin {12 (#W'¢ +¢) — 8 (¢ + ¢) 4 0)},

! m 1 o (, ) ,
- 1371’—87;'; . 7' ;;{e?’fzoM -COS(3'&T +20)

+ ¢%ef?. M(lo). cos (2o + =+ 24) + €' e2f2. M(”). cos (=’ 4 2w+ 20)
+ B2, M(w). cos 3=+ 24) + 2e’f4.N(w). cos (v’ + 4 9)
+ 2ef*. N(“).cos (= 4 49) }

and for the whole coefficient of cos {12 ¢t+¢)—8(nt+¢) + 4},

7 0m 1 df, © . ,
+13n’—-8n';'7';,{ 33f2-M .Sln(35+2a)

+ €2ef2. M(w).sin 27 + =+ 20) e f2. M. sin @+ 2=+ 29)
+ 2. M sin@w420) 420N sin ( +40)
+2ef4.N(”)‘sin(w+40)} |
On performing the calculations, the inequality is found to be
+ 07,0086 .sin {8 (nt+4¢) — 12 (&' £ 4 ¢') — 4}
+ 07,0060 . cos {8 (nt +¢) — 12 (7 ¢ 4 ¢) — 0}

or + 07,0105 .sin {8 (¢t +¢) — 12 (7' ¢+ ¢') — 39° 29}

which is too small to be sensible in any observations.

PART III.

PERTURBATIONS OF VENUS DEPENDING ON THE SAME ARGUMENTS.

67. If we consider Venus as disturbed by the Earth, and take the orbit of
Venus for the plane x y, the term involving cos (13 — 8) in the expansion of R
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will be exactly the same as when we consider the Earth disturbed by Venus.
For the longitudes of perihelia and the longitude of the node will be the same :
the sign of f will be different, but as the even powers only of this quantity enter
into the expansion of R, and as its magnitude (without respect to its sign) is
the same in both, that circumstance makes no difference. It is only necessary
then to put m’ instead of 7 in the multiplier of the term.

68. First, then, for the inequality in the epoch. Observing that in the ex-
pression of (51) the multiplier m is included in P, p, Q, and g, it will be seen

. . s dnfam
that for the perturbation of Venus we must use the multiplier — 2 n{&a = in-
39n?a’ m . . .
stead of ————. That is, the argument of the perturbation of Venus is the

same as that of the Earth; and its coefficient is found by multiplying the co-
8nPam
18n%a’ m*

efficient for the Earth by — As 87 = 13 7' nearly, this fraction

! 13 / . / 1
== ”m—; =—73. —%. o nearly. Assumlng?ri = 339630 and the other
401211
quantities as before, this fraction is — = >< 0,72333 X 339530° Whence the long

inequality in the epoch of Venus =
{—2"946 + Y X 0",0002970} X sin {87 — 137 +40° 44' 34" 4 Y x 239",7}
= {2,946 — Y X 0",0002970} X sin {87 — 137 4 220° 44' 34" + Y x 239")7}

The corresponding inequality in the axis major, like that for the Earth, is in-
sensible.

69. For the long inequality in the longitude of perihelion. This cannot be
deduced from that of the Earth: but, calculating it independently in the same
mannei', it is found that

w=1II — 0",008 sin (87 — 137) — 5",704 . cos (81— 131)’
70. For the long inequality in the excentricity. This may be derived from

that in the longitude of perihelion in the same manner in which it was done
for the Earth: thus it appears that

e = E — 0,0000001904 . sin (8 — 13 /') 4 0,0000000003 . cos (8! — .13 [')

71. For the inequality in latitude. The orbit of Venus must now be sup-
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posed to be inclined at a small angle to the plane of x y. We have remarked
that, in the development of R for Venus as the disturbed body, the sign of f
will be changed : and as the term of R on which the perturbation in latitude
depends is a multiple of odd powers of f, the sign for Venus will be different
from that for the Earth. Besides this there will be no difference, except that
am’n is to be substituted for &’ m 7. Proceeding then as in (65), and con-
sidering the effect of the first term of (63), we find

9
n m e M d 3 .
9=@—m.;.a—.T.%[.sm{m(n't-{-s')
— 8(nt+te)—3a —0—0}
whence
9
n m e M o if

sin(nt-l—e—ﬂ):sin(nt—l—e—@)+m.P.a,. e

cos (nt+e—10).sin{13@¢+4¢) —8@nt+s —3c" — 0 — 4}

And

9
7 m  a M( )a'

137 —=8n" ' d* m

p=D — €3 f.cos {13 (' ¢t +¢)

—8(nt+¢) —3a — 0 — 0}
The product of these expressions gives for the latitude of Venus
' ©

w a M d

(D.sin(nt+e—®)+—l—§n,———n_% A B f.sin {13 (7't +¢)

—9(nt+s) —3a —{0}

where ¢ has the same value which 4 had in the investigation for the Earth.

i oo MO

n
18w —8n° ' a " m

The perturbation in latitude is therefore €3 f . sin
{18 t4+¢)—9@nt+e —3a — 0}, and similarly for the other terms.
Comparing this with the term in (65) it will readily be seen that we have only to

m' n

multiply the expression of (66) by — 7—71—7?—57’ and to put 9 (n¢-4¢) — 13 ('t 4¢)

instead of 8 (n¢ +¢) — 12 (v’ ¢ + ¢), and the perturbation of Venus in latitude
will be found. Thus it becomes '
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—07,0123 . sin {9 (¢ +¢)— 18 0’ ¢ + &) — 0} — 07,0086 . cos {9 (nt -+ s)

— 13 W't +¢)— 4}
or

4 07,0151 X sin {9 (nt -+ ) — 13 (#'¢+¢) 4 140° 31}

which, though larger than the Earth’s perturbation in latitude, is too small to
be observable.

"~ CONCLUSION.

It appears, then, that in calculating the Earth’s longitude (or 180° + Sun’s
longitude), the following terms should be used in addition to those that have
hitherto been applied ; (where /and /" are the mean tropical longitudes of Venus
and the Earth, and Y the number of years after 1750 :)

To the epoch of mean longitude
+{2",059 —Y X 0",0002076} X sin{8/— 13/’ 4+ 40° 44' 34"+Y X 239",7}
To the epoch of longitude of perihelion
42268 X sin {8--13 7 +60° 16'}
To the excentricity
— 0,0000001849 . cos {87 — 1374 60° 16'}

and that, in calculating the Earth’s latitude (or the Sun’s latitude with sign
changed), the following term should be used ;

4+ 0",0105 . sin {8{—12 7 — 39° 29'}

Similarly, it appears that in calculating the place of Venus, the following terms
should be applied :

To the epoch of mean longitude
+1{2",946 — Y X 0",0002970} X sin {81 — 13 /' 4220° 44’ 34"+ Y x 239".7}
To the longitude of perihelion
—5"70 . cos {8/—13['}
To the excentricity .
—0,000000190 . sin {8 [— 13 [}

To the latitude
+0",0151 .sin {97/~ 137'4140° 31'}
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The terms affecting the latitude may be at once neglected. The inequali-
ties in longitude produced by the change of mean anomaly and excentricity,
(nt+4¢—w=ande), and which are
 for the Earth

—0",0470X sin{81— 127 — 15° 34'} — 0",0346 . sin{ 147 — 8 ] — 139° 22'}
for Venus

40,0671 .sin{9 71— 13 /' — 24° 40’} 4+0",0203 . sin {13 /' — 7 [ — 168° 40’}
can scarcely be detected from observation. The inequalities in the radii vec-
tores are not sensible.

The long inequalities in the epoch of longitude are however by no means
to be neglected. To point out a single instance in which their importance will
be sensible, I will estimate roughly their effect on the places of the Earth and
Venus at the next transit of Venus over the Sun’s disk (in 1874). The value
of these inequalities at the time of BraDLEY’s observations was small ; and they
were at their maximum at the beginning of this century. If, then, the mean
motions of the Earth and Venus were determined by comparing the observa-
tions about BrapLEY's time with the observations a few years ago; the Earth’s
longitude in 1874, when the inequalities are nearly vanishing, would be too
small by nearly 4”; that of Venus would be too great by 6”: their difference
of longitude would therefore be nearly 10" in error; and this would produce
on the geocentric* longitude of Venus an effect of between 20" and 30". As
another instance, I may mention that the secular motions of the Earth, deter-
mined from observations of two consecutive centuries, would differ nearly 8",
and those of Venus nearly 12".

These inequalities vanish in the years 1622, 1742, and 1861 ; and have their
greatest values, positive for the Earth and negative for Venus, in 1682; and
negative for the Earth and positive for Venus, in 1802. At the principal
transits of Venus their values are as follows :

* In the Memoirs of the Astronomical Society I have pointed out the utility of observations of
Venus near inferior conjunction for determining the coefficient of the inequality in the Earth’s motion,
produced by the Moon. I take this opportunity of repeating my conviction, that observations of Venus
near inferior conjunction are adapted better than any others to the detection and measurement of
minute inequalities in the Earth’s motion.

MDCCCXXXII. R
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For the Earth, For Venus,

In1é39 . . . . 408 . . . . . —1"28
1761 . . . . —0,98 . . . . . 41,41
1769 . . . . —1,34 . . . . . 41,9
1874 . . . . 40,68 . . . . . —0,97
1882 . . . . 41,0/ . . . . . —1,3

I shall now show the coincidence of the theoretical results with the cbserva-
tions that first suggested their necessity.

From BurckmarpTs examination of MaskeLYNE’s observations (Connais-
sance des Temps, 1816), and from my examination of Mr. Ponp’s observations

(Phil. Trans. 1828), it appeared that the mean longitudes of DELaMBRE’s tables
ought to be increased

in 1783 by 0",25
in 1801 by 0 ,08
in 1821 by 2 ,05

These observations are all reduced by the same catalogue. The differences of
the corrections are not proportional to the intervals; and this is the circum-
stance that shows the existence of some periodical inequality.

Now the values of the argument of the long inequality in the epoch are

for1783 . . . . 240°59
for1801 . . . . 268 4
for the middle of 1821 . . . . 298 46

The sines of these angles are —0,8745, — 0,9994, — 0,8766; and hence the
values of the inequality were

in1y83 . . . . —1"80
in1so1 . . . . —2,06
inis21 . . . . —1,81

If these had been applied in the tables, the corrections given by the observa-
tions above would have been

in1y83 . . . . 2905
in1s0l . . . . 2,86
inis2l . . . . 3,86
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and the differences between these are almost exactly proportional to the times.
They show that the secular motion ought to be increased by 4",8 (the preces-
sion being supposed the same as in the application of MaskeLYNE’s catalogue) ;
and then the application of the inequality investigated in this memoir will give
correctly the Sun’s mean longitude.

It appears, however, that the inequality in the motion of the perihelion given
by this investigation, will not account for the anomalies in the place of the
peribelion given in my paper referred to above.

Thus terminates one of the most laborious investigations that has yet been
made in the Planetary Theory. The term in question is a striking instance
of the importance to which terms, apparently the most insignificant, may some-
times rise ; and the following remark will show the magnitude of the errors
which might, under other circumstances, have arisen from the neglect of this
term. If the perihelia of Venus and the Earth had opposite longitudes, and if
the line of nodes coincided with the major axes, the excentricities and incli-
nation having the same values as at present, the coeflicient of the inequality
in the epoch would be 8",9; and all the other terms would be important. A
very small increase of the excentricities and inclination would double or treble
these inequalities.

I have avoided any discussion of physical theory, as little can be added
at present to what has been done by Larrace and others. I may remark,

; . de .. .
however, that my expression for d—; differs from that given by Larrack; and

that the difference produces no effect in the ultimate result, because Larrace
uses/nd¢ where I have used n¢. On this point I have only to state that, by
adopting the expression which I have used, every formula for the longitude,
the radius vector, and the velocity in any direction, is exactly the same in
form for the variable ellipse as for an invariable ellipse (taking the variable
elements instead of constant ones). If the disturbing force should at any
instant cease, my value of ¢ for that instant would be the true value of the
epoch of mean longitude in the orbit which the planet would proceed to
describe. It is precisely the object of using the method of variation of ele-
R 2
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ments, to obtain expressions which possess these properties; and therefore I
have little doubt that my form will be recognised as more completely in ac-
cordance with the principles of that method than Larrace’s. Ishould not in
the present instance have raised a question on this point, but that I conceive
the method of variation of elements, or some similar method, possessing the
same advantages of simplicity of application and unlimited accuracy as to the
order of the disturbing force, will ere long be adopted in the Planetary Theo-
ries, to the total exclusion of other methods. With this expectation, it appears
important to adhere closely to the principles of the theory in every formula
that is derived from it.

I believe that the paper now presented to the Royal Society contains the
first* specific improvement in the Solar Tables made in this country since the
establishment of the Theory of Gravitation. And I have great'pleasure in
reflecting that, after having announced a difficulty detected by observation, I
have been able to offer an explanation on the grounds of physical theory.

Postscrirt.

In estimating the variation of the elements of the orbit of Venus, the
change of longitude of perihelion was supposed to be the same as the sidereal
motion of the perihelion. This is not strictly true; as the longitude of the
perihelion, measured as in Art. 4, depends upon the place of the node, and is
affected therefore by the motion of the node as well as by the motion of the
perihelion. 'The amount of the error is however perfectly insignificant.

G. B. Ary.
Observatory, Cambridge,
Nov. 8, 1831.

* T am not aware that anything has been added to the theory of planetary perturbation, by an
Englishman, from the publication of NEwron’s Principia to the communication of Mr. Lusnock’s
Researches. In MaskeLYNE’s tables are two for the perturbations of the Earth produced by Venus
and Jupiter, calculated (he states) by himself; but they are utterly useless and erroneous, as they con-
tain no terms depending on the excentricities.



